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ABSTRACT

A nonlinear formulation for fluid-structure interactions based on the velocity potential

g developed. In this formulation the convective accelerations, nonlinear surface waves
and exact transmtting boundary condition are included. Nonlinear behaviors of dam-
ms subjected to constant accelerations, harmonic and actual earthquake

reservolr syste . .
ground motions are also investigated.

INTRODUCTION

The linear analysis of hydrodynamic pressures acting on rigid dams was first re-
ported DY Westergaard (1933). By neglecting the water compressibility, Chwang (1983)
~ddressed the nonlinear hydrodynamic pressures on a rigid plate when the system was
subjected to 2 short period of constant accelerations. Hung and Wang (1987), using the

&nite difference method and primitive variables for the governing equations, obtained the

sonlinear hydrodynamic pressure on a rigid dam subjected to ground motions. '
In this paper a nonlinear formulation, based on the velocity potential, for fluid-

ctructure interactions is proposed. In the formulation the convective terms, nonlinear
f.ce waves and exact transmitting boundary conditions, developed by Tsai et al.

SuIli

(1990a, 19900, 1990c), are included. The reservoir is divided into two fields, the near

and far fields (see Fig. 1). The near field is considered as a nonlinear area, and the

behavior in the far field is linear. The final discretized matrices are symmetrical, even
are involved. The nonlinear responses of the system

the nonlinearity of the near field ‘ ;
subjected to constant accelerations, harmonic and actual earthquake ground motions are

also presented.
GOVERNING EQUATION FOR THE NEAR FIELD

Assuming that water is inviscid, the equations of motion, in terms of primitive var-

ables. for the reservoir can be writien as
ou ou Ju 10P (1)
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The continuity equa ow 0N

— e S—— ——

9z  pC? ot (4)

Ba ' 02
TR ass density, ¢= the veloc;
L s e e in water, u and o — 1, i Ttal
e _t— o ce]erc:ti()ﬂ ¢ = the vclocﬁy - 5311;1’ mthe Pre::'::sure = N velocit;,
— the gravily ac : ' and z, an = : 1€
rdinates z : :
m of coo ults in

Eq. 3 with respect to t res

9 . -
of the fluid in a syst€

Differentiation of

+ -
2 ot &2 2 ( 5

Substitution of Eq. 4 into Eq. 3 yields the nonlinear governing equation given by
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Eq. 6 can be rewritten, in terms of the potential velocity ¢, as
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BOUNDARY CONDITIONS OF THE NEAR FIELD

(11)

: 1s the z-Component
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Gubstitution of Eq. 13 into Eq. 8
qurface that is. q. 8 results in the kinematic boundary condition on the

(13)

{ree

0¢ _On° on,
on Ot L ot (14)

Substitution of Eq. 12 into the dynamic boundary condition, Eq. 9, yields

— <} = n° =90 (15)
Appl}'ing the Galerkin’s method to Eq. 7, one obtains

/Ni (L.Z*FL, _.,,dul—- 0°¢
4

ox O0z* 52 (_) dA (16)

w i

[ntegration of the term on the leit hand side by parts ylelds

ONT 3 INT
/ NT_ .5 /( 9z “5%*‘.. aé)df*

0°¢ 3¢ 8 09
T
/ NT =2 dA + C,,j (LA L LT (17)
~tion of the shape function N into Eq. 17 leads to
dNT 9N ON” oN ! . -
+ $ dA + TNdA @
-/A( az al’- a:ﬂ a....) C?' A N N

96 9 , 893,00, 1 (18)

[ntrodu

Rearranging Eq. 18, the followmg equatlon can be obtained

MP+K &=B-E (19)

The matrices M,K,B and E 1n Eq. 19 are defined as follows

(20)

gNT N ANT BN) 4 (21)

(22)
and
d¢ (23)

Galerkin's mnethod to Eq.

Applying the
(24)
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Eq. 22, the boundary condition on the free surface is ;..

Substituting Eq. 14 1nto

by
d¢ T 0N r On,
53 o -~ N!— dS5 - N'n dS
Bg = 52N on s $2 at 52 ot
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Combining 19 and 26, the following matrix can be obtained
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li'l?hzenzgﬁﬂfn:lhf?r rflif‘:nii(j:s }f_m the free surface are denoted by subscript 2, at the
| elds by 3. The remaining nodes are denoted by subscript 1.

It sho

interface ©
EXACT TRANSMITTING BOUNDARY CONDITION

The effect of radiation damping in AR TR : :
. yses is treated follow th
devclopment by Tsai et al. (1990a, 1990b, 1990c). The procedure will be descriuedull:v%'icﬂ;

in the following : g
The governing equation 1s

PP TR
vd’—-—"a;fﬁ (34)

The velocity potential should satisty : (1) the compatability equations at the interface
and far fields, (2) the rigid boundary condition at the floor of the reservoir,

of the neal Tl ..
dition for the infinite fluid domain, (4)the boundary condition on

(3) the radiation con
2¢ _ ¢, if the surfa ' sy "
: rface wave is neglected, and (5) zero initial conditions for

the free surface, ;

the velocit Rotentia.l. ‘ _
The solution of the velocity potential, 3(t), at the interface of the near and far fields,

‘I’g(ﬁ) - - ./Ot E(T)‘PTGBGC:;TE‘T)

where Z(r) is an M x M diagonal matrix with mth diagonal term = Jo(AmC(t - 7)), t2> 0.
dal matrix with respect to Gs at the interface of the near and far

¢ is the nqrma.lized mo _
fields. Am is the miih.exgex?value rssociated with mth eigenvalue. G3 = [g; N3 N3 dS.
The time axis 1S divided into N equal intervals At, then Eq. 35 can be rewntten in the

following form

dr (35)

‘1’3(NAt) — F(Nﬁt) — Rcaaq)sfazﬁt) (36)

o initial conditions, the

For the speci
matrices F and R are defined as

N-1
F(NAt) = Z ‘I‘Q‘I’TGg,a@aé:rAt) (37)
n=1
and
R=%¥TE’ (38)

gonal matrix with mth diagonal term Qmm

where Q is an M x M dia
r=AmC(N-n+1)at (39)

AmC(N-n+1)iOt %
: [% {JO(T)H'I'(T) * HQ(T)JI(T)}] r=AnC(N-n-1)At

Qm = -:}- JO(T) ar = ——
2Am AmC(N-n-1)4t Am

r=AmCAOt ' (40)

R : [‘KT {JO(T)H-I(T) + HO(T)JI(T)}] r=0

Jg(’r) ar = EX:: -

1
2

.
A o

~ where H,(7) 1s 4 : f order v. s :
i, (r) is the Struve’s function O Otrix V- o constant if the time step At is constant.

- Itisnoted that coeflicients in the ma :
Tt Substitution of Eqs. 22 an ' q. 33 yields
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mitting boundary co,

natrices .
i e waves and exact irans ound
‘he formulation can be obtained from

4 be noted tha
b time step in this study to obtain

It shou!l -
.rtive terms, nonu
the convective ¢ '
are included. l:hf_' mcremi{zme
[teration procedures aIc ado]

olutions.
: NU}-IER_ICAL EXAMPLES

near suria
ta] form of

d for eac

- 1 o — P
. i st of the hvdrostatic pressure, acting on 3 ve s
L'y : i¢ Dresiures, IR EEGERS B . Y L s N ]

3 drod}n?_mt pwesermir ~f 180m in height with flat floor extending to infinity ., .

e h?;fngeit* tvpes of loadings are given to illustrate the nonlinear behavin. -

| er > 13 ; 1S 10T of

fi“Ed th;:scerw{oir svste}x? The extending length of the near field in the upstream direc,:
e dam- OIr systeml. ; - e ) B ey

and the sound velocity 1in waler are taken as 360m and 1438.656 m/sec respect

-
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L
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1. Constant Accelerations
When the system is excited by a constant acceleration, a = 0.5¢, very sjonig.. .
2, are observed. The hydrodynamic pressure fo- .1

nonlinear effects, shown in Fig. : ay ! 3
han that for the linear case. This is because the n.

nonlinear case i1s much higher t
effect, shown in Eq. 3, is proportional to the square of the velocity which is monot -~

increasing with time for this special case of constant accelerations.

2. Harmonic Ground Motions

quts,H'thf;'sysgeng 1S s_ub:;ected to a harmonic ocround motion, a sin 12¢ = 0.5¢ sin *

o : . . b A et —_— . S 1 &L, '!'-‘_""1.3. e

D F1g. J show insignificant nonlinear eflects when compared to linear respon<ec |
. - !*._:-l L_S. _.:'_‘

e

th.js c Tr : - : . :
ase the velocities of the fluid particles along the dam face are also = harmonic
100N11C Iunc-

b A

tion. Therefore. t ' 1S Insieni
e, the nonlinear effect is insignificant, even though the excitation f
: - i L:QC‘lE::'

12rad/sec 1S i [
/sec, 1s near the first natural irequency of the reservoir, 12.555 rad /sec

3. Earthquake Ground Motions
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An actual ea
rthquak :
e quake ground motion, 1940 EJ Centro, is applied to the d
; ; | } _6 dlll-Teservol:
, also shows neghgible nonlinear

ves and

¢ nonl; ' tighdeamexm svamsmitting boundary

D - s . . e

el effects for the s SPStream-downst enrn F System subjected
e two : Stréam direction are also ex-
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